${f \mathbb{R}}$ 400A DC/AC AUTORANGING TRUE RMS CLAMP-ON METER WITH

An ISO 9001:2008 Company

SPECIAL FEATURES :

- Measure line-level ACV frequency via test leads
- Relative Zero feature

KUSA

- 4000 Counts high resolution, Fast measurements
- Versatile & Handy
- Backlight display (KM 062)

ay (KM 062) • Diode Test

GENERAL SPECIFICATIONS:

- * Sensing : Average Sensing ((KM 061); True RMS sensing (KM 062)
- * Jaw opening & Conductor diameter : 30mm max
- * Display : 3-3/4 digits 4000 counts LCD display
- * Update Rate : 3 per second nominal
- * Polarity : Automatic
- * Low Battery : Below approx 2.4V
- * Operating Temperature : 0°C to 40°C
- * Relative Humidity : Maximum relative humidity 80% for temperature upto 31°C decreasing linearly to 50% Relative Humidity at 40°C

• Fast Audible Continuity

• Fully Autoranging on all functions for ease of use

• Display Hold, PEAK-rms MAX HOLD & Data Hold

AC True RMS Voltage & Current Functions (KM 062)
30ms Max HOLD to capture in-rush currents

• DCA / ACA 0.1A to 400A non-invasive current measurements.

- * Altitude : Operating below 2000m
- * Storage Temperature : -20°C to 60°C, < 80% R.H. (With battery removed)
- * Temperature Coefficient : nominal 0.15 x (specified accuracy) / °C @ (0°C-18°C or 28°C-40°C), or otherwise specified
- * Power supply : Standard 1.5V AAA Battery x 2.
- * Power Consumption : DCA & ACA : 11mA typical
 - Other function : 2.9mA typical
- * APO Timing : Idle for 30 minutes
- * APO Consumption : 190 A typical
- * Dimension : 188(L) x 63(W) x 40(H) mm
- * Weight : Approx. 218 gms

SAFETY :

- Meets IEC61010-1 2nd Ed., EN61010-1 2nd Ed., UL61010-1 2nd Ed., IEC61010-2-032, EN61010-2-032, UL61010B-2-032.
- Measurement Category : CAT III 600 Volts AC & DC
- Transient Protection : 6.5kV (1.2/50 S surge)
- Pollution degree : 2
- E. M. C. : Meets EN61326-1:2006 (EN55022, EN61000-3-2, EN61000-3-3, EN61000-4-2/3/4/5/6/8/11.
 - In an RF field of 3V/m :

Capacitance function is not specified.

Other function ranges :

Total Accuracy = Specified Accuracy + 50 digits

Performance above 3V/m is not specified

 Overload Protections : Clamp-on jaws : DC / AC 400A rms continuous

+ & COM terminals (all functions) : 600 V DC / V AC rms

- 600V AC / DC input protection on all functions
- Battery cover with Probe Holders
- Rugged Fire retarded casing; Soft carrying pouch
- LVD EN61010-1 & EN61010-2-032 CAT III 600V

ACCESSORIES :

Test leads (pair), Battery installed, User's Manual & Carrying Case.

All Specifications are subject to change without prior notice

KM 062 - TRUE RMS SENSING - 20 FUNCTION 37 RANGES

FULL MULTIMETER RANGES

ELECTRICAL SPECIFICATIONS : KM 061/ KM 062

Accuracy is ± (% reading digits + number of digits) or otherwise specified, at 23°C ± 5°C & less than 75% R.H.

True RMS ACV & ACA clamp-on accuracies are specified from 5% to 100% of range or otherwise specified. Maximum Crest Factor are as specified below, and with frequency spectrums, besides fundamentals, fall within the meter specified AC bandwidth for non-sinusoidal waveforms. Fundamentals are specified at 50Hz and 60Hz.

AC CURRENT (Clamp-On)

Range	Accuracy ¹⁾
400.0A	
40Hz ~ 60Hz @ 0~50A	±(1.0%rdg + 6dgts)
60Hz ~ 400Hz @ 0~50A	±(1.5%rdg + 5dgts)
40Hz ~ 60Hz @50A~200A	±(1.5%rdg + 5dgts)
60Hz ~ 200Hz @ 50A~200A	±(2.0%rdg + 5dgts)
40Hz ~ 60Hz @ 200A~300A	±(2.0%rdg + 5dgts)
40Hz ~ 60Hz @ 300A~400A	±(2.5%rdg + 5dgts)

 $^{\eta}$ Induced error from adjacent current-carrying conductor : <0.01A/A Crest Factor : < 1 : 8 at full scale & < 3.6 : 1 at half scale

DC CURRENT (Clamp-On)

Range	Accuracy ^{1) 2)}	
400.0A		
0 ~ 50.0A	±(1.0%rdg + 4dgts)	
50.0A ~ 200.0A	±(1.5%rdg + 5dgts)	
200.0A ~ 300.0A	±(2.0%rdg + 5dgts)	
300.0A ~ 400.0A	±(2.5%rdg + 5dgts)	

¹Induced error from adjacent current-carrying conductor : <0.01A/A ²Relative Zero △ mode is applied to offset the non-zero residual readings, if any

RESISTANCE

Range	Resolution	Accuracy
400.0	100 m	±(0.8%rdg + 6dgts)
4.000 k	1	±(0.6%rdg + 4dgts)
40.00 k	10	$\pm(0.6\%$ rdg + 4dgts)
400.0 k	100	±(0.6%rdg + 4dgts)
4.000 M	1 k	±(1.0%rdg + 4dgts)
40.00 M	10 k	±(2.0%rdg + 4dgts)

Open Circuit Voltage : 0.4V DC typical

CAPACITANCE

Range ¹⁾	Resolution		Accuracy ²⁾³⁾
500.0 nF	100	pF	±(3.5%rdg + 6dgts)
5.000 F	1	nF	±(3.5%rdg + 6dgts)
50.00 F	10	nF	±(3.5%rdg + 6dgts)
500.0 F	100	nF	±(3.5%rdg + 6dgts)
3000 F	1	F	±(3.5%rdg + 6dgts)

¹⁾ Additional 50.00nF range accuracy is not specified

²⁾ Accuracies with film capacitor or better

³⁾ Specified with battery voltage above 2.8V

(approximately half full battery).

Accuracy decreases gradually to 12% at low battery warning voltage of approximately 2.4V

G-17, Bharat Industrial Estate, T. J. Road, Sewree (W), Mumbai - 400 015. INDIA. Sales Direct.: 022 -24156638, Tel.: 022-241224540, 24181649, Fax: 022 - 24149659 Email: kusam_meco@vsnl.net, Website: www.kusamelectrical.com

DC VOLTAGE

De lette			
Range	Resolution	Accuracy	
400.0 mV	100 V	±(0.3%rdg + 3dgts)	
4.000 V	1 mV	±(0.5%rdg + 3dgts)	
40.00 V	10 mV	±(0.5%rdg + 3dgts)	
400.0 V	100 mV	±(0.5%rdg + 3dgts)	
600.0 V	100 mV	$\pm(1.0\%$ rdg + 4dgts)	

NMRR: > 50dB @ 50 / 60Hz

 $\label{eq:cmrr} \textbf{CMRR:} > 120 dB \ensuremath{@}\ DC, \ 50 \ / \ 60 Hz, \ Rs = 1 k$

Input Impedance: 10M , 30pF nominal (1000M for 400mV range)

AC VOLTAGE

Range	Resolution		Accuracy
50Hz / 60Hz			
4.000 V	1	mV	$\pm(1.0\%$ rdg + 4dgts)
40.00 V	10	mV	$\pm(1.0\%$ rdg + 4dgts)
400.0 V	100	mV	$\pm(1.0\%$ rdg + 4dgts)
60Hz ~ 500Hz			
4.000 V	1	mV	$\pm(1.5\%$ rdg + 4dgts)
40.00 V	10	mV	$\pm(1.5\%$ rdg + 4dgts)
400.0 V	100	mV	$\pm(1.5\%$ rdg + 4dgts)
50Hz ~ 500Hz			
600.0 V	100	mV	\pm (2.0%rdg + 4dgts)

CMRR: > 60dB @ DC to 60Hz, Rs=1k

Input Impedance : 2M , 30pF nominal

Crest Factor : < 2 : 1 at full scale & < 4 : 1 at half scale

HZ FREQUENCY

Function	Sensitivity (Sine Wave)	Range	
400.0mV	350 mV	10Hz ~ 1kHz	
4.000V	3.2 V	5Hz ~ 20kHz	
40.00V	25 V	5Hz ~ 100kHz	
400.0V	100 V	5Hz ~ 100kHz	
600 V	410 V	5Hz ~ 5kHz	
DCA/ACA	Unspecified		

Display counts : 5000 Maximum resolution : 0.001Hz

Accuracy : 0.5% + 4d

DIODE TESTER

Test Current	0.4 mA typical
Open Circuit Voltage	< 1.6V DC typical

AUDIBLE CONTINUITY TESTER

Audible Threshold	between 10 and 120	
Range	400.0	
Accuracy	1.5%rdg + 8dgts	
Open Circuit Voltage	0.4V DC typical	

All Specifications are subject to change without prior notice

Chhaya Computer/D:/Chhaya/Coreldraw Files/New catlogs Dec 2011/KM061-KM062.cdr

KUSAM-MECO[®] USE TRUE RMS WHEN MEASURING An ISO 9001:2008 Company AC WAVEFORMS

The waveforms on today's AC power lines are anything but clean. Electronic equipment such as office computers, with their switching power supplies, produce harmonics that distort power-line waveforms. These distortions make measuring AC voltage inaccurate when you use an averaging DMM.

Average voltage measurements work fine when the signal you're measuring is a pure sine wave, but errors mount as the waveform distorts. By using true RMS measurements, however, you can measure the equivalent heating effect that a voltage produces, including the heating effects of harmonics. Table 1 shows the difference between measurements taken on averaging DMMs & those taken on true RMS DMMs. In each case, the measured signal's peak-to-peak value is 2V. Therefore, the peak value is 1V.

For a 1-V peak sine wave, the average & RMS values are both 0.707V. But when the input signal is no longer a sine wave, differences between the RMS values & the average readig values occur. Those errors are most prominent when you are measuring square waves & pulse waveforms, which are rich in harmonics.

Table 1. Average vers	sus true RN	/IS comparis	on of typica	l waveforms.
Waveform	Actual Pk-Pk	True RMS Reading	Average Reading	Reading Error
Sine Wave	2.000	0.707	0.707	0%
Triangle Wave	2.000	0.577	0.555	-3.8%
Square Wave	2.000	1.000	1.111	+11.1%
Pulse (25% duty Cycle)	2.000	0.433	0.416	-3.8%
Pulse (12.5% duty Cycle)	2.000	0.331	0.243	-26.5%
Pulse (6.25% duty Cycle)	2.000	0.242	0.130	-46.2%

One limitation to making true RMS measurements is crest factor, and you should consider crest factor when making AC measurements. Crest factor is the ratio of a waveform's peak ("crest") voltage to its RMS voltage. Table 2 shows the crest factors for ideal waveforms.

Table 2. Crest factors of typical waveforms.			
Waveform	Crest Factor		
DC	1.000		
Square Wave	1.000		
Sine Wave	1.414		
Triangle Wave	1.732		
Pulse (25% duty Cycle)	1.732		
Pulse (12.5% duty Cycle)	2.646		
Pulse (6.25% duty Cycle)	3.873		

A DMM's specifications should tell you the maximum crest factor that the meter can handle while maintaining its measurement accuracy. True RMS meters can handle higher crest factors when a waveform's RMS voltage is in the middle of the meter's range setting. Typically, a DMM may tolerate a crest factor of 3 near the top of its scale but it might handle a crest factor of 5 that's in the middle of the range. Therefore, if you're measuring waveforms with high crest factors (greater than 3), you should adjust the DMM so the measured voltage is closest to the center of the measurement range.

Another limitation of true RMS is speed. If you're measuring relatively clean sine waves, then you can save time & money by using as averaging DMM. True RMS meters cost more than averaging meters and can take longer to produce measurements, especially when measuring millivolt-level AC signals. At those low levels, true RMS meters can take several seconds to stabilize a reading. Averaging meters won't leave you waiting.